Article ID Journal Published Year Pages File Type
4636067 Applied Mathematics and Computation 2006 16 Pages PDF
Abstract
In this study we present iterative regularization methods using rational approximations, in particular, Padé approximants, which work well for ill-posed problems. We prove that the (k, j)-Padé method is a convergent and order optimal iterative regularization method in using the discrepancy principle of Morozov. Furthermore, we present a hybrid Padé method, compare it with other well-known methods and found that it is faster than the Landweber method. It is worth mentioning that this study is a completion of the paper [A. Kirsche, C. Böckmann, Rational approximations for ill-conditioned equation systems, Appl. Math. Comput. 171 (2005) 385-397] where this method was treated to solve ill-conditioned equation systems.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,