| Article ID | Journal | Published Year | Pages | File Type |
|---|---|---|---|---|
| 4636549 | Applied Mathematics and Computation | 2007 | 8 Pages |
Abstract
In this paper, we study the existence of at least one or two positive solutions to the n-point boundary value problemuâ³(t)+a(t)f(u)=0,tâ(0,1),uâ²(0)=âi=1n-2biuâ²(ξi),u(1)=âi=1kaiu(ξi)-âi=k+1saiu(ξi)-âi=s+1n-2aiuâ²(ξi),where 1 ⩽ k ⩽ s ⩽ n â 2, ai, bi â [0, â) with 0<âi=1kai-âi=k+1sai<1,âi=1n-2bi<1,0<ξ1<ξ2<â¯<ξn-2<1. The Krasnoselskii's fixed-point theorem is used.
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Haihua Wang, Haibo Chen,
