Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4636619 | Applied Mathematics and Computation | 2007 | 11 Pages |
Abstract
This paper studies the optimization of large-scale hydrothermal power systems. For the general problem with n hydro-plants, we present an algorithm using a particular strategy related to the Gauss-Southwell method of nonlinear optimization. The algorithm offers a constructive method for producing sequences of problems with one hydro-plant. For this simple problem we use Pontryagin's minimum principle to prove a condition for the extremals of the functional. We set out our problem in terms of optimal control in continuous time, with the Bolza-type functional. Finally, we present one example employing a program developed with the “Mathematica” package and analyze the convergence of the algorithm.
Keywords
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
L. Bayón, J.M. Grau, M.M. Ruiz, P.M. Suárez,