Article ID Journal Published Year Pages File Type
4637065 Applied Mathematics and Computation 2006 19 Pages PDF
Abstract

This paper is concerned with a delayed predator–prey system with same feedback delays of predator and prey species to their growth, respectively. We prove that a sequence of Hopf bifurcations occur at the positive equilibrium as the delay increases monotonously from zero. By using the theory of normal norm and center manifold reduction, an explicit algorithm for determining the direction of Hopf bifurcations and the stability of bifurcating periodic solutions is derived. In addition, the global existence results of periodic solutions bifurcating from Hopf bifurcations are established by using a global Hopf bifurcation result due to Wu [J. Wu, Symmetric functional differential equations and neural networks with memory, Trans. Amer. Math. Soc. 350 (1998) 4799–4838]. Finally, a numerical example supporting our theoretical prediction is also given. Our findings are contrasted with recent studies on a delayed predator–prey system with the feedback time delay of prey species to its growth by Song and Wei [Y. Song, J. Wei, Local Hopf bifurcation and global periodic solutions in a delayed predator-prey system, J. Math. Anal. Appl. 301 (2005) 1–21]. As the feedback time delay τ increases monotonously from zero, the positive equilibrium of the latter switches k times from stability to instability to stability. In contrast, the positive equilibrium of our system appears to lose the above property.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,