Article ID Journal Published Year Pages File Type
4637288 Applied Mathematics and Computation 2006 27 Pages PDF
Abstract

In this paper we consider two recurrent neural network model for solving linear and quadratic programming problems. The first model is derived from an unconstraint minimization reformulation of the program. The second model directly is obtained of optimality condition for an optimization problem. By applying the energy function and the duality gap, we will compare the convergence these models. We also explore the existence and the convergence of the trajectory and stability properties for the neural networks models. Finally, in some numerical examples, the effectiveness of the methods is shown.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,