Article ID Journal Published Year Pages File Type
4637712 Journal of Computational and Applied Mathematics 2017 7 Pages PDF
Abstract

An algorithmic approach for generating generalised Zernike polynomials by differential operators and connection matrices is proposed. This is done by introducing a new order of generalised Zernike polynomials such that it collects all the polynomials of the same total degree in a column vector. The connection matrices between these column vectors composed by the generalised Zernike polynomials and a family of polynomials generated by a Rodrigues formula are given explicitly. This yields a Rodrigues type formula for the generalised Zernike polynomials themselves with properly defined differential operators. Another consequence of our approach is the fact that the generalised Zernike polynomials obey a rather simple partial differential equation. We recall also how to define Hermite–Zernike polynomials.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,