Article ID Journal Published Year Pages File Type
4637777 Journal of Computational and Applied Mathematics 2017 12 Pages PDF
Abstract

A shift-splitting preconditioner was recently proposed for saddle point problems, which is based on a generalized shift-splitting of the saddle point matrix. We provide a new analysis to prove that the corresponding shift-splitting iteration method is unconditional convergent. To further show the efficiency of the shift-splitting preconditioner, the eigenvalue distribution of the shift-splitting preconditioned saddle point matrix is investigated. We show that all eigenvalues having nonzero imaginary parts are located in an intersection of two circles and all real eigenvalues are located in a positive interval. Numerical examples are given to confirm our theoretical results.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,