Article ID Journal Published Year Pages File Type
4638135 Journal of Computational and Applied Mathematics 2016 12 Pages PDF
Abstract

This paper presents a computational model that characterizes the spatio-temporal dynamics of blood perfusion in cardiac myocardium. Specifically, we are interested in reproducing qualitative images obtained by contrast-enhanced exams, which are widely used in clinical medicine to evaluate the blood perfusion in the heart. The application of contrast allows the detection of injuries, ischemic regions, fibrosis or tumors. Here we focus on the pathological case associated to subendocardial infarct. In our modeling, we will consider the tissue of cardiac myocardium as a porous media, i.e. a solid region with empty spaces. To this end, the modeling was based on differential equations and Darcy’s Law, which correlates tissue permeability, pressure difference and the blood flow in the cardiac tissue.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,