Article ID Journal Published Year Pages File Type
4638216 Journal of Computational and Applied Mathematics 2016 26 Pages PDF
Abstract

In this article, we intend to use quadratic and cubic B-spline quasi-interpolants to develop higher order numerical methods for some Sobolev type equations in one space dimension. Our aim is also to compare the performance of the proposed methods in terms of the accuracy and the rate of convergence. We also discuss another approach to the cubic B-spline quasi-interpolation based method, where we achieve fourth order of accuracy in space. We theoretically establish the order of accuracy for the three proposed methods and also establish the L2L2-stability in the linear case using von Neumann analysis. As a particular case of the Sobolev type equations, we take the equal width and the Benjamin–Bona–Mahony–Burgers equations, and perform several numerical experiments to support our theoretical results.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,