Article ID Journal Published Year Pages File Type
4638220 Journal of Computational and Applied Mathematics 2016 13 Pages PDF
Abstract

In this paper, a stabilized mixed finite element method for a coupled steady Stokes–Darcy problem is proposed and investigated. This method is based on two local Gauss integrals for the Stokes equations. Its originality is to use a difference between a consistent mass matrix and an under-integrated mass matrix for the pressure variable of the coupled Stokes–Darcy problem by using the lowest equal-order finite element triples. This new method has several attractive computational features: parameter free, flexible, and altering the difficulties inherited in the original equations. Stability and error estimates of optimal order are obtained by using the lowest equal-order finite element triples (P1−P1−P1)(P1−P1−P1) and (Q1−Q1−Q1)(Q1−Q1−Q1) for approximations of the velocity, pressure, and hydraulic head. Finally, a series of numerical experiments are given to show that this method has good stability and accuracy for the coupled problem with the Beavers–Joseph–Saffman–Jones and Beavers–Joseph interface conditions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,