Article ID Journal Published Year Pages File Type
4638473 Journal of Computational and Applied Mathematics 2015 14 Pages PDF
Abstract

The weak Galerkin (WG) is a novel numerical method based on variational principles for weak functions and their weak partial derivatives defined as distributions. In the implementation, the weak partial derivatives and the weak functions are approximated by polynomials with various degrees of freedom. The accuracy and the computational complexity of the corresponding WG scheme is significantly impacted by the selection of such polynomials. This paper presents an optimal combination for the polynomial spaces that minimize the number of unknowns in the numerical scheme without compromising the accuracy of the numerical approximation. For illustrative purpose, the authors use the second order elliptic equation to demonstrate the basic ideas of polynomial reduction. Consequently, a new weak Galerkin finite element method is proposed and analyzed. Error estimates of optimal order are established for the corresponding WG approximations in both a discrete H1H1 norm and the standard L2L2 norm. In addition, the paper presents some numerical results to demonstrate the power of the WG method in dealing with finite element partitions with arbitrary polygons in 2D or polyhedra in 3D. The numerical examples include various finite element partitions such as triangular mesh, quadrilateral mesh, honeycomb mesh in 2D and mesh with deformed cubes in 3D.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,