Article ID Journal Published Year Pages File Type
4638542 Journal of Computational and Applied Mathematics 2015 13 Pages PDF
Abstract

We propose and analyze a class of high order methods for the numerical solution of initial value problems for linear multi-term fractional differential equations involving Caputo-type fractional derivatives. Using an integral equation reformulation of the initial value problem we first regularize the solution by a suitable smoothing transformation. After that we solve the transformed equation by a piecewise polynomial collocation method on a mildly graded or uniform grid. Optimal global convergence estimates are derived and a superconvergence result for a special choice of collocation parameters is established. Theoretical results are verified by some numerical examples.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,