Article ID Journal Published Year Pages File Type
4638977 Journal of Computational and Applied Mathematics 2014 11 Pages PDF
Abstract

We consider time-invariant linear systems of differential algebraic equations, which include physical parameters or other parameters. Uncertainties of the parameters are modelled by random variables. We expand the corresponding random-dependent solutions in the polynomial chaos. Approximations of unknown coefficient functions can be obtained by quadrature or sampling schemes. Alternatively, stochastic collocation methods or the stochastic Galerkin approach yield larger coupled systems of differential algebraic equations. We show the equivalence of these types of numerical methods under certain assumptions. The index of the coupled systems is analysed in comparison to the original systems. Sufficient conditions for an identical index are derived. Furthermore, we present results of numerical simulations for an example.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,