Article ID Journal Published Year Pages File Type
4639575 Journal of Computational and Applied Mathematics 2012 14 Pages PDF
Abstract

Two new classes of quadrature formulas associated to the BS Boundary Value Methods are discussed. The first is of Lagrange type and is obtained by directly applying the BS methods to the integration problem formulated as a (special) Cauchy problem. The second descends from the related BS Hermite quasi-interpolation approach which produces a spline approximant from Hermite data assigned on meshes with general distributions. The second class formulas is also combined with suitable finite difference approximations of the necessary derivative values in order to define corresponding Lagrange type formulas with the same accuracy.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,