Article ID Journal Published Year Pages File Type
4639763 Journal of Computational and Applied Mathematics 2012 10 Pages PDF
Abstract

Quasi-interpolation of radial basis functions on finite grids is a very useful strategy in approximation theory and its applications. A notable strongpoint of the strategy is to obtain directly the approximants without the need to solve any linear system of equations. For radial basis functions with Gaussian kernel, there have been more studies on the interpolation and quasi-interpolation on infinite grids. This paper investigates the approximation by quasi-interpolation operators with Gaussian kernel on the compact interval. The approximation errors for two classes of function with compact support sets are estimated. Furthermore, the approximation errors of derivatives of the approximants to the corresponding derivatives of the approximated functions are estimated. Finally, the numerical experiments are presented to confirm the accuracy of the approximations.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,