Article ID Journal Published Year Pages File Type
4639810 Journal of Computational and Applied Mathematics 2012 16 Pages PDF
Abstract

A stochastic conjugate gradient method for the approximation of a function is proposed. The proposed method avoids computing and storing the covariance matrix in the normal equations for the least squares solution. In addition, the method performs the conjugate gradient steps by using an inner product that is based on stochastic sampling. Theoretical analysis shows that the method is convergent in probability. The method has applications in such fields as predistortion for the linearization of power amplifiers.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,