Article ID Journal Published Year Pages File Type
4639895 Journal of Computational and Applied Mathematics 2011 8 Pages PDF
Abstract

In this paper, we prove strong convergence theorems by the hybrid method for a family of hemi-relatively nonexpansive mappings in a Banach space. Our results improve and extend the corresponding results given by Qin et al. [Xiaolong Qin, Yeol Je Cho, Shin Min Kang, Haiyun Zhou, Convergence of a modified Halpern-type iteration algorithm for quasi-ϕϕ-nonexpansive mappings, Appl. Math. Lett. 22 (2009) 1051–1055], and at the same time, our iteration algorithm is different from the Kimura and Takahashi algorithm, which is a modified Mann-type iteration algorithm [Yasunori Kimura, Wataru Takahashi, On a hybrid method for a family of relatively nonexpansive mappings in Banach space, J. Math. Anal. Appl. 357 (2009) 356–363]. In addition, we succeed in applying our algorithm to systems of equilibrium problems which contain a family of equilibrium problems.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,