Article ID Journal Published Year Pages File Type
4639931 Journal of Computational and Applied Mathematics 2011 15 Pages PDF
Abstract

This paper presents a 4D new hyperchaotic system which is constructed by a linear controller to a 3D Lü system. Some complex dynamical behaviors such as Hopf bifurcation, chaos and hyperchaos of the simple 4D autonomous system are investigated and analyzed. The corresponding hyperchaotic and chaotic attractor is first numerically verified through investigating phase trajectories, Lyapunove exponents, bifurcation path, analysis of power spectrum and Poincaré projections. Furthermore, the design is illustrated with both simulations and experiments. Finally, the control problem of a new hyperchaotic system is investigated using negative feedback control. Ordinary feedback control, dislocated feedback control and speed feedback control are used to suppress hyperchaos to an unstable equilibrium. Numerical simulations are presented to demonstrate the effectiveness of the proposed controllers.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,