Article ID Journal Published Year Pages File Type
4639938 Journal of Computational and Applied Mathematics 2011 15 Pages PDF
Abstract

Various simulation methods for tempered stable random variates with stability index greater than one are investigated with a view towards practical implementation, in particular cases of very small scale parameter, which correspond to increments of a tempered stable Lévy process with a very short stepsize. Methods under consideration are based on acceptance–rejection sampling, a Gaussian approximation of a small jump component, and infinite shot noise series representations. Numerical results are presented to discuss advantages, limitations and trade-off issues between approximation error and required computing effort. With a given computing budget, an approximative acceptance–rejection sampling technique Baeumer and Meerschaert (2009) [11] is both most efficient and handiest in the case of very small scale parameter and moreover, any desired level of accuracy may be attained with a small amount of additional computing effort.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,