Article ID Journal Published Year Pages File Type
4640117 Journal of Computational and Applied Mathematics 2011 6 Pages PDF
Abstract

The max-bisection problem is an NP-hard combinatorial optimization problem. In this paper, a new Lagrangian net algorithm is proposed to solve max-bisection problems. First, we relax the bisection constraints to the objective function by introducing the penalty function method. Second, a bisection solution is calculated by a discrete Hopfield neural network (DHNN). The increasing penalty factor can help the DHNN to escape from the local minimum and to get a satisfying bisection. The convergence analysis of the proposed algorithm is also presented. Finally, numerical results of large-scale G-set problems show that the proposed method can find a better optimal solutions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,