Article ID Journal Published Year Pages File Type
4640174 Journal of Computational and Applied Mathematics 2011 10 Pages PDF
Abstract

The study of high-dimensional differential equations is challenging and difficult due to the analytical and computational intractability. Here, we improve the speed of waveform relaxation (WR), a method to simulate high-dimensional differential-algebraic equations. This new method termed adaptive waveform relaxation (AWR) is tested on a communication network example. Further, we propose different heuristics for computing graph partitions tailored to adaptive waveform relaxation. We find that AWR coupled with appropriate graph partitioning methods provides a speedup by a factor between 3 and 16.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,