Article ID Journal Published Year Pages File Type
4640614 Journal of Computational and Applied Mathematics 2010 16 Pages PDF
Abstract

In this paper we discuss the existence of periodic solutions of discrete (and discretized) non-linear Volterra equations with finite memory. The literature contains a number of results on periodic solutions of non-linear Volterra integral equations with finite memory, of a type that arises in biomathematics. The “summation” equations studied here can arise as discrete models in their own right but are (as we demonstrate) of a type that arise from the discretization of such integral equations. Our main results are in two parts: (i) results for discrete equations and (ii) consequences for quadrature methods applied to integral equations. The first set of results are obtained using a variety of fixed-point theorems. The second set of results address the preservation of properties of integral equations on discretizing them. The effect of weak singularities is addressed in a final section. The detail that is presented, which is supplemented using appendices, reflects the differing prerequisites of functional analysis and numerical analysis that contribute to the outcomes.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,