Article ID Journal Published Year Pages File Type
4640682 Journal of Computational and Applied Mathematics 2010 10 Pages PDF
Abstract

This paper deals with convergence analysis and applications of a Zienkiewicz-type (Z-type) triangular element, applied to fourth-order partial differential equations. For the biharmonic problem we prove the order of convergence by comparison to a suitable modified Hermite triangular finite element. This method is more natural and it could be applied to the corresponding fourth-order eigenvalue problem. We also propose a simple postprocessing method which improves the order of convergence of finite element eigenpairs. Thus, an a posteriori analysis is presented by means of different triangular elements. Some computational aspects are discussed and numerical examples are given.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,