Article ID Journal Published Year Pages File Type
4641062 Journal of Computational and Applied Mathematics 2009 15 Pages PDF
Abstract

In this paper we deal with the numerical solutions of Runge–Kutta methods for first-order periodic boundary value differential equations with piecewise constant arguments. The numerical solution is given by the numerical Green’s function. It is shown that Runge–Kutta methods preserve their original order for first-order periodic boundary value differential equations with piecewise constant arguments. We give the conditions under which the numerical solutions preserve some properties of the analytic solutions, e.g., uniqueness and comparison theorems. Finally, some experiments are given to illustrate our results.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,