Article ID Journal Published Year Pages File Type
4641101 Journal of Computational and Applied Mathematics 2009 14 Pages PDF
Abstract

Moving meshes are successfully used in many fields. Here we investigate how a recently proposed approach to combine the Strang splitting method for time integration with pseudospectral spatial discretization by orthogonal polynomials can be extended to include moving meshes. A double representation of a function (by coefficients of polynomial expansion and by values at the mesh nodes associated with a suitable quadrature formula) is an essential part of the numerical integration. Before numerical implementation the original PDE is transformed into a suitable form. The approach is illustrated on the linear heat transfer equation.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,