Article ID Journal Published Year Pages File Type
4641180 Journal of Computational and Applied Mathematics 2009 11 Pages PDF
Abstract

In this study, we propose a new SVEIR epidemic disease model with time delay, and analyze the dynamic behavior of the model under pulse vaccination. Pulse vaccination is an effective strategy for the elimination of infectious disease. Using the discrete dynamical system determined by the stroboscopic map, we obtain an ‘infection-free’ periodic solution. We also show that the ‘infection-free’ periodic solution is globally attractive when some parameters of the model under appropriate conditions. The permanence of the model is investigated analytically. Our results indicate that a large vaccination rate or a short pulse of vaccination or a long latent period is a sufficient condition for the extinction of the disease.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , , ,