Article ID Journal Published Year Pages File Type
4641250 Journal of Computational and Applied Mathematics 2009 14 Pages PDF
Abstract

In this work we derive the structural properties of the Collocation coefficient matrix associated with the Dirichlet–Neumann map for Laplace’s equation on a square domain. The analysis is independent of the choice of basis functions and includes the case involving the same type of boundary conditions on all sides, as well as the case where different boundary conditions are used on each side of the square domain. Taking advantage of said properties, we present efficient implementations of direct factorization and iterative methods, including classical SOR-type and Krylov subspace (Bi-CGSTAB and GMRES) methods appropriately preconditioned, for both Sine and Chebyshev basis functions. Numerical experimentation, to verify our results, is also included.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,