Article ID Journal Published Year Pages File Type
4641284 Journal of Computational and Applied Mathematics 2010 8 Pages PDF
Abstract

We propose a method to map a multiply connected bounded planar region conformally to a bounded region with circular boundaries. The norm of the derivative of such a conformal map satisfies the Laplace equation with a nonlinear Neumann type boundary condition. We analyze the singular behavior at corners of the boundary and separate the major singular part. The remaining smooth part solves a variational problem which is easy to discretize. We use a finite element method and a gradient descent method to find an approximate solution. The conformal map is then constructed from this norm function. We tested our algorithm on a polygonal region and a curvilinear smooth region.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,