Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4641361 | Journal of Computational and Applied Mathematics | 2010 | 11 Pages |
The space-fractional diffusion equation models anomalous super-diffusion. Its solutions are transition densities of a stable Lévy motion, representing the accumulation of power-law jumps. The tempered stable Lévy motion uses exponential tempering to cool these jumps. A tempered fractional diffusion equation governs the transition densities, which progress from super-diffusive early-time to diffusive late-time behavior. This article provides finite difference and particle tracking methods for solving the tempered fractional diffusion equation with drift. A temporal and spatial second-order Crank–Nicolson method is developed, based on a finite difference formula for tempered fractional derivatives. A new exponential rejection method for simulating tempered Lévy stables is presented to facilitate particle tracking codes.