Article ID Journal Published Year Pages File Type
4641362 Journal of Computational and Applied Mathematics 2010 19 Pages PDF
Abstract

We consider the random walk on Z+={0,1,…}Z+={0,1,…}, with up and down transition probabilities given the chain is in state x∈{1,2,…}x∈{1,2,…}:equation(1)px=12(1−δ2x+δ)andqx=12(1+δ2x+δ). Here δ≥−1δ≥−1 is a real tuning parameter. We assume that this random walk is reflected at the origin. For δ>0δ>0, the walker is attracted to the origin. The strength of the attraction goes like δ2x for large xx and so is long-ranged. For δ<0δ<0, the walker is repelled from the origin. This chain is irreducible and periodic; it is always recurrent, either positive or null recurrent.Using Karlin–McGregor’s spectral representations in terms of orthogonal polynomials and first associated orthogonal polynomials, exact expressions are obtained for first return time probabilities to the origin (excursion length), eventual return (contact) probability, excursion height and spatial moments of the walker. All exhibit power-law decay in some range of the parameter δδ. In the study, an important role is played by the Wall duality relation for birth and death chains with reflecting barrier. Some qualitative aspects of the dual random walk (obtained by interchanging pxpx and qxqx) are therefore also included.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,