Article ID Journal Published Year Pages File Type
4641435 Journal of Computational and Applied Mathematics 2008 10 Pages PDF
Abstract

In this article, we discuss the solution of the space-fractional diffusion equation with and without central linear drift in the Fourier domain and show the strong connection between it and the αα-stable Lévy distribution, 0<α<20<α<2. We use some relevant transformations of the independent variables xx and tt, to find the solution of the space-fractional diffusion equation with central linear drift which is a special form of the space-fractional Fokker–Planck equation which is useful in studying the dynamic behaviour of stochastic differential equations driven by the non-Gaussian (Lévy) noises. We simulate the continuous time random walk of these models by using the Monte Carlo method.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,