Article ID Journal Published Year Pages File Type
4641519 Journal of Computational and Applied Mathematics 2009 11 Pages PDF
Abstract

A nonlinear coupled elliptic system modelling a large class of engineering problems was discussed in [A.F.D. Loula, J. Zhu, Finite element analysis of a coupled nonlinear system, Comp. Appl. Math. 20 (3) (2001) 321–339; J. Zhu, A.F.D. Loula, Mixed finite element analysis of a thermally nonlinear coupled problem, Numer. Methods Partial Differential Equations 22 (1) (2006) 180–196]. The convergence analysis of iterative finite element approximation to the solution was done under an assumption of ‘small’ solution or source data which guarantees the uniqueness of the nonlinear coupled system. Generally, a nonlinear system may have multiple solutions. In this work, the regularity of the weak solutions is further studied. The nonlinear finite element approximations to the nonsingular solutions are then proposed and analyzed. Finally, the optimal order error estimates in H1H1-norm and L2L2-norm as well as in W1,pW1,p-norm and LpLp-norm are obtained.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,