Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4641547 | Journal of Computational and Applied Mathematics | 2009 | 8 Pages |
A family of eighth-order iterative methods for the solution of nonlinear equations is presented. The new family of eighth-order methods is based on King’s fourth-order methods and the family of sixth-order iteration methods developed by Chun et al. Per iteration the new methods require three evaluations of the function and one evaluation of its first derivative. Therefore this family of methods has the efficiency index which equals 1.682. Kung and Traub conjectured that a multipoint iteration without memory based on nn evaluations could achieve optimal convergence order 2n−12n−1. Thus we provide a new example which agrees with the conjecture of Kung–Traub for n=4n=4. Numerical comparisons are made to show the performance of the presented methods.