Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4641615 | Journal of Computational and Applied Mathematics | 2008 | 11 Pages |
Abstract
In this paper we consider the following n-dimensional second-order nonlinear system on time scalesuÎÎ(t)+λa(t)f(uÏ(t))=0,tâ[a,b]Twith the Sturm-Liouville boundary conditionsαu(a)-βuÎ(a)=0,γu(Ï(b))+δuÎ(Ï(b))=0,where u=(u1,â¦,un), α=diag[α1,â¦,αn], β=diag[β1,â¦,βn], γ=diag[γ1,â¦,γn], δ=diag[δ1,â¦,δn]. Let f0=âi=1nlimâ¥uâ¥â0fi(u)/â¥u⥠and fâ=âi=1nlimâ¥uâ¥ââfi(u)/â¥uâ¥. Define i0= number of zeros in the set {f0,fâ} and iâ= number of infinities in the set {f0,fâ}. By using fixed point index theory, we show that:
Related Topics
Physical Sciences and Engineering
Mathematics
Applied Mathematics
Authors
Hong-Rui Sun, Wan-Tong Li,