Article ID Journal Published Year Pages File Type
4641637 Journal of Computational and Applied Mathematics 2008 13 Pages PDF
Abstract

In this paper we introduce general iterative methods for finding zeros of a maximal monotone operator in a Hilbert space which unify two previously studied iterative methods: relaxed proximal point algorithm [H.K. Xu, Iterative algorithms for nonlinear operators, J. London Math Soc. 66 (2002) 240–256] and inexact hybrid extragradient proximal point algorithm [R.S. Burachik, S. Scheimberg, B.F. Svaiter, Robustness of the hybrid extragradient proximal-point algorithm, J. Optim. Theory Appl. 111 (2001) 117–136]. The paper establishes both weak convergence and strong convergence of the methods under suitable assumptions on the algorithm parameters.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,