Article ID | Journal | Published Year | Pages | File Type |
---|---|---|---|---|
4641705 | Journal of Computational and Applied Mathematics | 2009 | 15 Pages |
In this paper, the problems of convergence and superlinear convergence of continuous-time waveform relaxation method applied to Volterra type systems of neutral functional-differential equations are discussed. Under a Lipschitz condition with time- and delay-dependent right-hand side imposed on the so-called splitting function, more suitable conditions about convergence and superlinear convergence of continuous-time WR method are obtained. We also investigate the initial interval acceleration strategy for the practical implementation of the continuous-time waveform relaxation method, i.e., discrete-time waveform relaxation method. It is shown by numerical results that this strategy is efficacious and has the essential acceleration effect for the whole computation process.