Article ID Journal Published Year Pages File Type
4641871 Journal of Computational and Applied Mathematics 2008 12 Pages PDF
Abstract

First exit time distributions for multidimensional processes are key quantities in many areas of risk management and option pricing. The aim of this paper is to provide a flexible, fast and accurate algorithm for computing the probability of the first exit time from a bounded domain for multidimensional diffusions. First, we show that the probability distribution of this stopping time is the unique (weak) solution of a parabolic initial and boundary value problem. Then, we describe the algorithm which is based on a combination of the sparse tensor product finite element spaces and an hp-discontinuous Galerkin method. We illustrate our approach with several examples. We also compare the numerical results to classical Monte Carlo methods.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,