Article ID Journal Published Year Pages File Type
4641931 Journal of Computational and Applied Mathematics 2008 14 Pages PDF
Abstract
A new meshless method called gradient reproducing kernel particle method (GRKPM) is proposed for numerical solutions of one-dimensional Burgers' equation with various values of viscosity and different initial and boundary conditions. Discretization is first done in the space via GRKPM, and subsequently, the reduced system of nonlinear ordinary differential equations is discretized in time by the Gear's method. Comparison with the exact solutions, which are only available for restricted initial conditions and values of viscosity, approves the efficacy of the proposed method. For challenging cases involving small viscosities, comparison with the results obtained using other numerical schemes in the literature further attests the desirable features of the presented methodology.
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,