Article ID Journal Published Year Pages File Type
4641932 Journal of Computational and Applied Mathematics 2008 17 Pages PDF
Abstract

This paper addresses the theoretical analysis of a fully discrete scheme for the one-dimensional time-dependent Schrödinger equation on unbounded domain. We first reduce the original problem into an initial-boundary value problem in a bounded domain by introducing a transparent boundary condition, then fully discretize this reduced problem by applying Crank–Nicolson scheme in time and linear or quadratic finite element approximation in space. By a rigorous analysis, this scheme has been proved to be unconditionally stable and convergent, its convergence order has also be obtained. Finally, two numerical examples are performed to show the accuracy of the scheme.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,