Article ID Journal Published Year Pages File Type
4641935 Journal of Computational and Applied Mathematics 2008 32 Pages PDF
Abstract

We consider the initial-boundary value problem in a bounded domain with moving boundaries and nonhomogeneous boundary conditions for the coupled system of equations of Korteweg–de Vries (KdV)-type modelling strong interactions between internal solitary waves. Finite domains of wave propagation changing in time arise naturally in certain practical situations when the equations are used as a model for waves and a numerical scheme is needed. We prove a global existence and uniqueness for strong solutions for the coupled system of equations of KdV-type as well as the exponential decay of small solutions in asymptotically cylindrical domains. Finally, we present a numerical scheme based on semi-implicit finite differences and we give some examples to show the numerical effect of the moving boundaries for this kind of systems.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , , ,