Article ID Journal Published Year Pages File Type
4642188 Journal of Computational and Applied Mathematics 2008 13 Pages PDF
Abstract

The nonlinear complementarity problem (denoted by NCP(F  )) can be reformulated as the solution of a nonsmooth system of equations. By introducing a new smoothing NCP-function, the problem is approximated by a family of parameterized smooth equations. A one-step smoothing Newton method is proposed for solving the nonlinear complementarity problem with P0P0-function (P0P0-NCP) based on the new smoothing NCP-function. The proposed algorithm solves only one linear system of equations and performs only one line search per iteration. Without requiring strict complementarity assumption at the P0P0-NCP solution, the proposed algorithm is proved to be convergent globally and superlinearly under suitable assumptions. Furthermore, the algorithm has local quadratic convergence under mild conditions.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,