Article ID Journal Published Year Pages File Type
4642190 Journal of Computational and Applied Mathematics 2008 19 Pages PDF
Abstract

A numerical study is presented of reaction–diffusion problems having singular reaction source terms, singular in the sense that within the spatial domain the source is defined by a Dirac delta function expression on a lower dimensional surface. A consequence is that solutions will be continuous, but not continuously differentiable. This lack of smoothness and the lower dimensional surface form an obstacle for numerical discretization, including amongst others order reduction. In this paper the standard finite volume approach is studied for which reduction from order two to order one occurs. A local grid refinement technique is discussed which overcomes the reduction.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,