Article ID Journal Published Year Pages File Type
4642644 Journal of Computational and Applied Mathematics 2007 26 Pages PDF
Abstract

A spectral element method for solving parabolic initial boundary value problems on smooth domains using parallel computers is presented in this paper. The space domain is divided into a number of shape regular quadrilaterals of size h and the time step k   is proportional to h2h2. At each time step we minimize a functional which is the sum of the squares of the residuals in the partial differential equation, initial condition and boundary condition in different Sobolev norms and a term which measures the jump in the function and its derivatives across inter-element boundaries in certain Sobolev norms. The Sobolev spaces used are of different orders in space and time. We can define a preconditioner for the minimization problem which allows the problem to decouple. Error estimates are obtained for both the h and p versions of this method.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,