Article ID Journal Published Year Pages File Type
4642759 Journal of Computational and Applied Mathematics 2007 15 Pages PDF
Abstract

We improve upon the method of Zhu and Zhu [A method for directly finding the denominator values of rational interpolants, J. Comput. Appl. Math. 148 (2002) 341–348] for finding the denominator values of rational interpolants, reducing considerably the number of arithmetical operations required for their computation. In a second stage, we determine the points (if existent) which can be discarded from the rational interpolation problem. Furthermore, when the interpolant has a linear denominator, we obtain a formula for the barycentric weights which is simpler than the one found by Berrut and Mittelmann [Matrices for the direct determination of the barycentric weights of rational interpolation, J. Comput. Appl. Math. 78 (1997) 355–370]. Subsequently, we give a necessary and sufficient condition for the rational interpolant to have a pole.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,