Article ID Journal Published Year Pages File Type
4642842 Journal of Computational and Applied Mathematics 2007 13 Pages PDF
Abstract

In this paper, the linear conforming finite element method for the one-dimensional Bérenger's PML boundary is investigated and well-posedness of the given equation is discussed. Furthermore, optimal error estimates and stability in the L2L2 or H1H1-norm are derived under the assumption that hh, h2ω2h2ω2 and h2ω3h2ω3 are sufficiently small, where hh is the mesh size and ωω denotes a fixed frequency. Numerical examples are presented to validate the theoretical error bounds.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,