Article ID Journal Published Year Pages File Type
4642875 Journal of Computational and Applied Mathematics 2007 24 Pages PDF
Abstract

In this paper, the nonlinear minimax problems with inequality constraints are discussed, and a sequential quadratic programming (SQP) algorithm with a generalized monotone line search is presented. At each iteration, a feasible direction of descent is obtained by solving a quadratic programming (QP). To avoid the Maratos effect, a high order correction direction is achieved by solving another QP. As a result, the proposed algorithm has global and superlinear convergence. Especially, the global convergence is obtained under a weak Mangasarian–Fromovitz constraint qualification (MFCQ) instead of the linearly independent constraint qualification (LICQ). At last, its numerical effectiveness is demonstrated with test examples.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,