Article ID Journal Published Year Pages File Type
4642913 Journal of Computational and Applied Mathematics 2007 11 Pages PDF
Abstract

In the present work, by treating the arteries as thin-walled prestressed elastic tubes with a stenosis and the blood as an inviscid fluid we have studied the propagation of weakly nonlinear waves in such a medium, in the longwave approximation, by employing the reductive perturbation method. The variable coefficients KdV and modified KdV equations are obtained depending on the balance between the nonlinearity and the dispersion. By seeking a localized progressive wave type of solution to these evolution equations, we observed that the wave speeds takes their maximum values at the center of stenosis and gets smaller and smaller as one goes away from the stenosis. Such a result seems to reasonable from the physical point of view.

Keywords
Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,