Article ID Journal Published Year Pages File Type
4643081 Journal of Computational and Applied Mathematics 2007 5 Pages PDF
Abstract

In this paper, we propose a numerical method to verify for nearly multiple eigenvalues of a Hermitian matrix not being strictly multiple eigenvalues. From approximate eigenvalues computed, it seems to be difficult to distinguish whether they are strictly multiple eigenvalues or simple ones, and if they are very close each other, the verification method for simple eigenvalues may fail to enclose them separately, because of singularity of the system in the verification. There are several methods for enclosing multiple and nearly multiple eigenvalues (e.g., [Rump, Computational error bounds for multiple or nearly multiple eigenvalues, Linear Algebra Appl. 324 (2001) 209–226]), For such cases, there is no result to decide the enclosed eigenvalues are nearly multiple or strictly multiple, up to now. So, for enclosed eigenvalues, we propose a numerical method to separate nearly multiple eigenvalues.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
,