Article ID Journal Published Year Pages File Type
4643118 Journal of Computational and Applied Mathematics 2006 10 Pages PDF
Abstract

We consider a quasistatic problem which models the bilateral contact between a viscoelastic body and a foundation, taking into account the damage and the friction. The damage which results from tension or compression is then involved in the constitutive law and it is modelled using a nonlinear parabolic inclusion. The variational problem is formulated as a coupled system of evolutionary equations for which we state the existence of a unique solution. Then, we introduce a fully discrete scheme using the finite element method to approximate the spatial variable and the Euler scheme to discretize the time derivatives. Error estimates are derived and, under suitable regularity hypotheses, the convergence of the numerical scheme obtained. Finally, a numerical algorithm and results are presented for some two-dimensional examples.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, , ,