Article ID Journal Published Year Pages File Type
4643302 Journal of Computational and Applied Mathematics 2006 15 Pages PDF
Abstract

In this paper, we present a novel approach for constructing a nonlinear recursive predictor. Given a limited time series data set, our goal is to develop a predictor that is capable of providing reliable long-term forecasting. The approach is based on the use of an artificial neural network and we propose a combination of network architecture, training algorithm, and special procedures for scaling and initializing the weight coefficients. For time series arising from nonlinear dynamical systems, the power of the proposed predictor has been successfully demonstrated by testing on data sets obtained from numerical simulations and actual experiments.

Related Topics
Physical Sciences and Engineering Mathematics Applied Mathematics
Authors
, ,